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The catalytic asymmetric cyanation of aldehydes to give cyano-
hydrins is a versatile synthetic method in organic chemistfy.
Upon transformation, optically active cyanohydrins give important
intermediates not only in natural product chemistry but also in the
fields of biology and pharmaceuticdi$iowever, in contrast to the
development of chiral Lewis acid catalydigxamples of asym-
metric cyanation to aldehydes with trimethylsilylcyanide (TMSCN)
catalyzed by a chiral Lewis basare still limited to Kagan’s
pioneering work. We report here the highly enantioselective
cyanation of aromatic aldehydes by chiral lithium binaphtholates
1 and2 in the presence of a catalytic amount of water or alcohol
as a co-activator (Chart 1), which is a simple and inexpensive
catalyst suitable for the aim of process chemistry to give gram-
scale cyanohydrins in minimum solvent successfully.

Chart 1. Chiral Lithium Binaphtholate Complexes

o0, [0,
sedlllves

(R)1 (R)-2

First, monolithium catalystR)-1 prepared in situ from 1:1 of
(R)-1,1-bi-2-naphthol (R)-BINOL) andn-BuLi in toluene was used
to convert 1 mmol of benzaldehyd8g) into the corresponding
cyanohydrin 4a) with TMSCN (1.0 equiv) at-78°C for 1 h (Table
1). (§-4awas obtained quantitatively in 23% ee with 1 mol % of
(R)-1 (entry 1)8 Interestingly, 10 mol % ofR)-1 gave 58% ee of
(R)-4aalong with a changeover of enantioselectivity (entry 2). Next,
an attempt withR)-2 prepared in situ from 1 mol % oR})-BINOL
and 2 mol % oih-BuLi gave R)-4aalmost quantitatively with 65%
ee (entry 3 Here again, 10 mol % ofR)-2 gave 26% ee ofain
(9-form with a changeover in absolute stereochemistry (entfy 4).

Table 1. Enantioselective Cyanation Catalyzed by (R)-1 or (R)-2
o cat. (R)-BINOL / n-BuLi OTMS
L+ TMSCI_\J H,O (0-10 mol%) PS
Prah (10eauv) Tguene @mi), —78°c,1h 1 4y N
entry  (R)-BINOL (mol %)  n-BuLi(mol%)  H,O (mol%) yield (%) ee (%)
1 1 1 - >99 23R
2 10 10 - >99 58[9]
3 1 2 - 99 65 [R]
4 10 20 - 99 26[9]
5 1 1 0.3 >99 58[9]
6 10 10 3 95 959
7 1 2 1 >99 25[9]
8 10 20 10 >99 88[9]
Table 2. Effect of Lithium Source upon (R)-1 Catalyzed
Enantioselective Cyanation?
3a + TMSCN (R)-BINOL / lithium source (10 mol% each) Sv4
(1.0 equiv.) toluene (2 mL), — 78 °C, 1 h (Sy4a

entry lithium source vyield (%) ee (%) entry lithium source  vyield (%) ee (%)

1 LiOH 98 95 4  LOPf >99[98p 97[90P
2 LOHHO 93 78 5  LiOPd 97 58
3 LiOEt 94 97 6 LOB&4 97 96

21 mmol scale of3a ®1 mol % of R)-BINOL—LiOPr was used for
10 mmol of3a ¢10 mol % of R)-BINOL and 20 mol % of LiOPrwas
used.

2). As expected, the release of® after complexation of LiOH
with (R)-BINOL was quite effective and gav&)4a with 95% ee
(entry 1). Regarding the effect of,B in Table 1, LIOHH,O had
lower catalytic activity than LiOH and gave&S)4a with 78% ee
(entry 2), while LpO or LiIOAc!? showed no reactivity. Eventually,
LiOEt, LIOPY, and LiOBU were found to be highly effective, and
the enantioselectivity ofg)-4awas increased up to 97% ee (entries
3—6). LiOPf was such a highly active precursor at promoting

For these interesting results, we suspected that the coexistenceyanation of3a (10 mmol) with 1 mol % catalyst loading in

of adventitious moisture including the catalyst and/or solvent may

minimum solvent (2 mL) that the gram scale 8f-éawas obtained

have caused the opposite results regarding the enantiomeric excesg@ractically with 90% ee almost quantitatively (entry 4). Again,

Thus, we next intended to add a small amount e®Ho confirm
whether water affects the activity of theell-dried catalyst?>10 1
mol % of (R)-1 or (R)-2 with a catalytic amount of water turned
the sense of enantioselectivity 4 into (S)-form (entries 5 and 7
versus & and 3). Higher catalytic activity was observed with 10
mol % of (R)-1-(H,0), rather than R)-2:(H,O),: 95% ee (entry

BINOL—2LiOPf catalyst showed lower catalytic activity than
BINOL—LIOPr catalyst (entry 5).

Next, the cyanation of other aldehydes with TMSCN was
examined with LiOPrand R)-BINOL (i.e., (R)-1-i-PrOH) (Table
3). Aromatic aldehydes with an electron-withdrawing group or an
electron-donating group gave the correspondiBg4(with high

6) versus 88% ee (entry 8). More or less than the optimized amountenantioselectivities up to 97% ee almost quantitatively (entries

of water gradually decreased catalytic activity (see Supporting
Information). We could rule out the possibility of the addition to
aldehyde with HCN, which was generated from TMSCN an®H
because low catalytic activity (60% yield, 44% &) (vas observed
with (R)-I/HCN.1! Other protic additives such asPrOH and
t-BuOH were also effective, but not superior toH

Encouraged by the effect of catalytic water, we next examined
other lithium sources in place ofBuLi to generate corresponding
protic compounds in situ by complexation witR)¢{BINOL (Table
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2—12).a- or f-Naphthaldehydes3(n, 3n) and 3-furylaldehyde3p)
bearing a heterocycle also gave excellent results up to 98% ee
(entries 13-15). Double cyanation of isophthaldehyd#p) pro-
ceeded smoothly to givél-product §9-4p in 85% yield with 98%

ee (entry 16). Notably, even—13 mol % of our simple BINOL-

Li catalyst in minimum solvent (2 mL) could afford the various
corresponding cyanohydring almost quantitatively with high
enantioselectivities in practically useful gram scale (10 mmBj)). (
1-i-PrOH showed low enantioselectivity for aliphatic aldehydes.

10.1021/ja051125¢c CCC: $30.25 © 2005 American Chemical Society
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Table 3. Cyanation of Aldehydes Catalyzed by (R)-1+/-PrOH? that (R)-1-i-PrOH may be a mixture of an active monomeric species
TMSCN (R)-BINOL / LIOPr (1-10 mol% each) ~ OTMS and inactive oligomeric speciésAlthough a further investigation
R™H (1.0 equiv) toluene 2 mL), — 78 °C, 1 h R CN of mechanistic aspect.s. is required to acquire a full understgndlng,
3 (S)-4 our postulated transition states are shown on the basis of a

monomeric structure or a complex strikingly similar to this species

entry RO yield (%) ce () (Figure 1 and Supporting Information). Taking advantage of the

1 Ph @a) >99 [98P 97 [90F detailed studies on hypervalent silicon intermediatesg found

% ﬁ;cgﬁw (ét::)) gg gg that transition state assemiflys less favorable because of (1) steric

2 _CIC H4 repulsion between the aryl group of aldehyde and ROH coordinating

p-CICsH4 (3d) 98 [99P 92 [91F i _ )

5 m-CICsHa (36) 83 91 to the Li center and (2) little overlap of—s stacking between

6 p-BrCsHa (3f) 98 [95F 93 [90F aromatic aldehyde and a binaphthyl plane Rf-BINOL. On the

7 m-BrCeHa4 (30) 96 87 other hand,5 avoids this repulsion and shows adequatesr

8 p-CFsCeHa (3) 97 82 interaction and hydrogen bonding, to eventually gige4.

lg xa&&ﬁﬁ:g}? gg [97F gg [90F In summary, we have developed a highly enantioselective
11 m-MeOCeHa (3K) 93 [03F 97 [05F cygnatlpn_of aro_matlc aldehydes using a simple and inexpensive
12 3,5-(MeO)CsHs (31) 99 [92F 97 [97F chiral lithium binaphtholate aqua or alcohol complexes. The
13 a-naphthyl @m) 95 81 cyanation is suitable for process chemistry to ensure the practical
14 B-naphthyl Gn) 96 95 gram-scale cyanohydrin synthesis in minimum solvent. Further
15 3-furyl 30) 96 [93F 98 [93F investigations into understanding the role of water and alcohol to
16 m-CHOGH. (3p) 8% 98 enhance the catalytic activity are in progress.
210 mol % each of R)-BINOL and LiOPt for 1 mmol of 3 was used Acknowledgment. Financial support for this project was
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used for 5 mmol of aldehydé.3 mol % each of R)-BINOL and LiOP# COE Program of MEXT.
was used for 3.3 mmol of aldehydelsolated yield and enantioselectivitiy . . . ) . .
for dl-product. Other 15% yield wamesoproduct. Supporting Information Available: Experimental procedures. This
material is available free of charge via the Internet at http://pubs.acs.org.
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